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Abstract
When groups of individuals make choices among several alternatives, the

most compelling social outcome is the Condorcet winner, namely the
alternative beating all others in a pair-wise contest. Obviously the Condorcet
winner cannot be overturned if one sub-group proposes another alternative it
happens to favor.  However, in some cases, and especially with haphazard
voting, there will be no clear unique winner, with the outcome consisting of a
triple of pair-wise winners that each beat different subsets of the alternatives
(i.e. a “top-cycle”.)  We explore the sensitivity of Condorcet winners to various
perturbations in the voting process that lead to top-cycles. Surprisingly,
variations in the number of votes for each alternative is much less important
than consistency in a voter’s view of how alternatives are related. As more and
more voter’s preference orderings on alternatives depart from a shared model of
the domain, then unique Condorcet outcomes become increasingly unlikely.

1. Introduction
There are abundant theoretical results showing that for large numbers of

voters each having random preferences over a large set of alternatives, there will
almost surely be no stable agreement or unique outcome (e.g. Arrow 1963,
Campbell & Tullock1965, Kelly 1986, Saari 1994, Jones et al 1995.) To insure
consensus, it has been clear for decades that some form of constraint must be
introduced that prohibits voters from choosing alternatives haphazardly. One
plausible constraint is that individual preference orders are consistent with a
shared global model for relating alternatives (Runkel, 1956). In this case, the
probability of the group reaching a stable agreement is over 90% (Richards et
al., 1998, 2002.)  For certain types of shared models, agreement is guaranteed
regardless of the numbers of voters and their voting power. Simple examples of
shared models relating alternatives include how presidential candidates are
positioned along a liberal to conservative dimension, the organization of taste
choices for soft  (or alcoholic!) drinks, the perceived relation between landmarks
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in a city, the democratic versus communist versus industrial wealth of nations,
etc.

To insure consensus, important conditions include (i) that each individual
votes faithfully, or not at all when "in doubt", (ii) that there is no uncertainty or
external source of noise that perturbs a voter’s ranking of alternatives, and (iii)
that a voter’s ranking is consistent with the shared global model. Any violations of
these conditions will reduce the odds for consensus. Here, we explore the reduced
likelihood of unique winners when a shared global model for relating alternatives
is violated. The principal result will be that imperfect knowledge of a domain has
small consequence if individuals vote faithfully, but haphazard preference
orderings that are inconsistent with a shared domain model can create havoc.

2. The Shared Model Constraint
The main assumption is that alternatives are related by a labeled connected

graph M(A,e) with a set of vertices A representing the alternative choice set {a1,.....
an}  and a set of edges e that indicate a non-metric "similarity" relationship between
the alternatives (Shepard 1980, Borg & Lingoes 1987.)

Figure 1 shows a simple example of a graph M(A,e) representing parameter
changes between four alternatives,  a1,  a2, a3, a4. Each edge in M(A,e) connecting
two alternatives indicates that those alternatives differ in a single attribute. To
illustrate, if the alternatives are choices among alcoholic drinks, a1 and a4 may be
two brands of a scotch whiskey such as Glenlivet (a1) versus a scotch liquor like
Southern Comfort (a4). Likewise, a2 and a3 may differ from a1 by two different
blends of bourbon, such as Jack Daniels or Jim Bean.

In the ideal case, we assume that each voter’s preferences are consistent with
the relationships specified by the shared model M(A,e), with each voter having a
unique most-preferred alternative, called the ideal point. Lower-ranked preferences
follow from the set of transitive paths of the graph, with the second-most preferred
alternatives being vertices adjacent to the ideal point, third-most the next set, etc.
An ordering that jumps around, violating the relationships among alternatives in
M(A,e) is not allowed (except later when noise or uncertainty is explicitly
introduced.)  Let D/i be the partial order induced from M(A,e) beginning at the
ideal point ai.  Then D/i = (A,P) is an asymmetric and transitive directed graph
where (aj, ak) ε P iff the number of edges on the shortest path from ai to aj is less
than the number of edges
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on the shortest path from ai to ak. If (aj, ak) ε P then we say that aj is preferred to
ak, denoted aj > ak. If the number of edges on the shortest path from ai to aj is
equal to the number of edges on the shortest path from ai to ak then we say that aj
and ak are non-comparable (or indifferent) for those voters with ideal point ai,
denoted as aj ~ ak. Figure 1 gives an example of the set of four directed graphs
induced from a model M and the corresponding sets of feasible preferences over
the set of these alternatives.

3. Definitions and Notation
Let w = (w1... wn) be the normalized weights over the n preference types --

i.e., wi is the proportion of voters with ideal point ai and thus the proportion of
voters with the partial order Di over the set of alternatives A.  Let | aj > ak |
denote the number of voters for whom aj is preferred to ak. Then an alternative aj
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ε A is the alternative most preferred by the group if for all ak ε A, ak =/= aj, | aj >
ak| > | ak > aj|.  Hence, aj is the top-ranked alternative or, more simply,  "the
winner".  The Condorcet tally method, which evaluates all pairs of alternatives,
is used to find this winner (Condorcet 1785.)

Very often in noisy contests, there will not be a Condorcet winner.  Rather,
one alternative aj may beat ak in a pair-wise comparison, but ak is beaten by ai,
which in turn beats aj. If either ai, aj, or ak also beat all remaining n-3 alternatives,
then there is a top-cycle and no winner. We call such outcomes unstable.

Stability (or conversely, the instability of an outcome): For a fixed set of
alternatives and model Mn, the stability of an outcome is the probability that there
will not be a top-cycle, or, equivalently, that there will be a unique Condorcet
winner (excluding ties.)

Not to be confused with the stability is the robustness of an outcome.  For example,
an outcome may not include top-cycles, but still be very sensitive to the choice of
weights, or to the particular form of the model Mn.

Robustness: The robustness of an outcome is the likelihood that
perturbations in the edge set for model Mn, or fluctuations in the weights on
alternatives will lead to a different winner.

Note that stability measures the ease with which an outcome can be overturned by
another alternative, whereas robustness tests whether or not the same outcome will
be reached following some perturbation.  Following a brief aside on relevant
aspects of robustness, we focus on stability.

4. Robustness
Robustness impacts stability analysis in two ways: (i) the choice of tally

procedure and (ii) the relative roles of model Mn compared with weight variations
on alternatives.

The simplest and most common method for choosing winners among a set
of alternatives is simple Plurality, i.e. a winner-take-all. This procedure ignores
any model relating alternatives, because the outcome is that alternative with the
maximum number of votes (or here, equivalently, the maximum weight node in
the graphical version of Mn.) The plurality winner need not be a majority winner,
and in extreme cases will garner only as few percent of the total votes. Not
surprisingly, this winner will be very easy to overturn, and hence is not robust.  In
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contrast, the Condorcet and Borda procedures favored here are quite robust to
variations in voting strengths if there is some modicum of relationships among
alternatives (Condorcet 1785, Borda 1786, Young 1986.)These two procedures
are highly correlated (>90%) with the most likely winner being that alternative
receiving the most support from many similar alternatives (Richards & Seung
2004.) Hence variations in voting strengths for one alternative become diluted
with much less impact. Appendix 1 defines and compares data for these three
tally procedures, and shows the striking advantage of the Condorcet and Borda
winners.

   

To further reinforce the importance of model Mn in a choice domain, rather
than weights on alternatives, consider Figure 2. In this figure, the two curves
differ in whether the structure of the domain model is altered, or whether the
weights on vertices (alternatives) are changed. Again, as will be inferred unless
otherwise noted, weights that voters place on vertices in Mn are chosen from a
uniform distribution, and the graphical model Mn with n vertices is a random
graph with all edges bi-directional with edge probability of one-half. The directed
graphs Di governing a voter’s preference orders are limited to the ideal point and
its neighbors in Mn, with all lower ranked preferences taken as equivalent (i.e.
indifferent.) The open diamonds show that when the domain model is held fixed,
but a second set of weights on alternatives are chosen from a uniform distribution,
there is little change in the percent of agreement in outcomes, which remains
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roughly constant at 40% for n <30 and 1/2<p<2/3. In contrast, when the weights
are held fixed, but applied to two different random models for Mn, there is a
dramatic fall in agreement between the two winners (gray triangles.) Elsewhere
we have shown that for n>10 the expected agreement in outcomes when Mn is
revised is roughly (n-k)/n, where k is the number of vertices in Mn that have been
altered (Richards, 2005.) The sections that follow detail the result highlighted in
Fig. 2, showing that both the structure of the model Mn and the extent to which
voter’s preferences adher to this model are the major sources of instability in
outcomes.

5. Methods
 Our results are largely based on Monte Carlo simulations. The procedure is

to construct a connected graph a with n vertices and edge probability p. (For most
of these simulations, p = 1/2.) In the ideal case, with no "noise" and faithful
voting, the random graph a determines the set of n feasible preference orders, with
each preference order assigned a weight wi, i = 1,....n, drawn uniformly from the
interval [0,1000]. These weights create an n-tuple wi representing the distribution
of voters over feasible preferences. We then evaluate all a pairs of alternatives to
determine whether one alternative beats all others using the Condorcet tally. The
number of trials varied between 200 and 500 depending upon the probability of
no-winner. Because of the high correlation between the Borda and Condorcet
winners, the presence of Condorcet top-cycles gives a good indication of the
likelihood that a Borda winner can be overturned. The maximum average error in
the results is about 3 percent.

6. Uncertainty in Voting
We assume that each voter’s ideal point (first choice) is respected, and only

second or lower ranked preferences are subject to uncertainty. In the extreme case,
there is no regard for any shared model Mn relating alternative choices, and all
votes are cast haphazardly, excepting the voter’s first choice. Backing away from
this extreme, we can group voters by their ideal points, and let the haphazard
voting take place only for small segments of the voting population, and only for
alternatives that do not correspond to the ideal points. Figure 3 is an example.
For this particular model M4, the directed edge from a1 to a4 and the new directed
edge from a4 to a3 shows that now a3 (rather than a1) is a second choice
preference for a4, whereas a4 still remains one of three second-choices for a1. The
result of these changes is a new preference ordering D4 for a4, but NO change
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in D1 for a1. The most extreme case of such rearrangements will be when
edges of Mn are chosen randomly from a list of all directed edges among the
alternatives. This case will be referred to as a “random directed graph”, to be
contrasted with the ideal Mn whose edges are all bidirectional.

6.1 Haphazard Voting
The simplest perturbation to describe is the most extreme: excepting the

ideal point, all individuals make choices haphazardly when choosing between
the two alternatives being compared in each Condorcet trial. In other words,
model Mn becomes irrelevant, and furthermore, each voter’s preference orders



8

are changing widely from one Condorcet test pair to the next. Figure 4 shows
the result: the probability of a top-cycle, and hence no unique winner, rises
rapidly toward 100%, already reaching 90% for 10 alternatives. In contrast, as
shown by the lowest curve, if voters respect the

   

model Mn (here a random graph relating alternatives with p(e) =1/2), the
chance of no winner is less than 5%. Hence model Mn provides enormous
stability in outcomes, because the likelihood of no-winner is small.

6.2 Haphazard Preferences Orders
The disastrous case above is equivalent to all voters changing their

preference orders for each Condorcet comparison. Let us then require that each
voter’s preference ordering on alternatives be fixed. Thus rather than
constraining the preference orders Di to be constrained by a shared model Mn,
let the Di’s be chosen at random (but as before, limited to three levels as in Fig.
1.) This perturbation can be effected by altering the bidirectional edges in Mn,
specifically by choosing edges at random from a uniform distribution of all nC2
edges.

Let eik be the directional edge linking vi to vk, and eki be the opposite
directional edge from vk to vi. If voter (i) associated with vertex vi drops a
similarity relation to vk, then edge eik is deleted and the remaining directional
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edge from vertex vk is eki . In this process, only vertex vi has been altered, or,
equivalently, only voter (i) has changed his preference orderings.

     

The top curve in Fig. 5 (filled squares) shows the probability of top-cycles
when all voters rearrange their edges in Mn, choosing new neighbors from a
uniform distribution of (n-1) vertices. (Hence for p = 1/2, about one-half (0.4) of
the links between vertices will be bi-directional.) For this condition, note the
maximum of roughly 20% compared with only 4% of top cycle outcomes for the
ideal bi-directional Mn (lowest curve.)  Significantly, unlike random noise on
alternative weights, as the number of alternatives becomes large, the odds for no
unique winner become small.

Between these two cases of all bidirectional or mostly directed edges in Mn
is shown another, much less extreme “miss-matched” condition where only one
type of voter rearranges only one edge (open circles.)  An intermediate miss-
match is if all voters rearrange only one relationship in the global domain model
Mn ; the result is similar and roughly intermediate between the solid squares and
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open circles. In the complementary miss-match where only one type of voter
rearranges all edges, again the result is also an intermediate curve with a
maximum near 8 alternates. These results are surprising: even one type of voter
with directed edges has a disturbing effect on the probability of consensus and
the effect is roughly equivalent to all voters mismatching one relationship.

7. Partial Uncertainty
Here we explore further the condition where most of the population will

agree on a model for the domain and vote accordingly, but a smaller segment will
have beliefs and preference orders inconsistent with the shared model held by the
majority. How detrimental to achieving consensus will be an aberrant set of
voters?

7.1 Preliminaries
As before, the manipulation is for each individual to vote their first choice

but otherwise choose alternatives arbitrarily during each tally, ignoring the shared
model Mn. The fraction of haphazard votes cast will be the main independent
variable. In a Condorcet tally with the “indifferent” option, there will be a one-
third probability of choosing either one of the two alternatives being compared,
or simply punting. Because punting will not disrupt a fair social outcome, the
uncertainty or noise in this case will be taken as 67%, namely the two-thirds of
the votes that are cast for one alternative or another. Obviously, as the number of
haphazard votes increases, the probability of no-winner will also increase (see
Fig.4.) We can increase the odds for such negative outcomes in two ways: (i) by
adding more uncertain (or rogue) voters who always vote haphazardly, or (ii) by
distributing the haphazard votes across all voters. As will be shown, one set of
curves predicts the unsuccessful outcome in both cases.

7.2 Haphazard votes for all less preferred alternatives
 The solid curves in Fig. 6 show the probability of no Condorcet winner
when varying amounts of noise or uncertainty is distributed uniformly across
all voters, for all choices other than their first choice. Each curve represents the
result for different random graphs having vertices ranging from 3 to 100, with
edge probability of one-half. These results are rather insensitive to whether the
random graph is sparse or dense, specifically for edge probabilities ranging
from 1/4 to 3/4.  Note that the slope of the curves is about one over most of the
range, with the percent no-winner proportional to the uncertainty for a random
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graph of known size n. As the size, n, of these graphs increases, so does the
effects of uncertainty or noise in the aggregation process. The translation from
one curve to another is approximately O(n2) as n increases. Note that even a

    

small percent of haphazard votes (e.g.10%) can have severe consequences on
achieving successful outcomes for choice sets larger than twelve alternatives.

The dashed lines summarize simulation results when a small group of
voters are uncertain, and vote haphazardly 100% of the time. (Recall that the
voting power for any type of voter is chosen from a uniform distribution of
weights.) For a single type of rogue voter among a group of four types
(alternatives), the effect on the outcome will be equivalent to distributing the
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noise over 25% of the total votes cast. Hence the dashed curve labeled “1
voter” crosses the 4- alternative solid curve at a point directly above 25% noise
on the abscissa, corresponding to about 12% no-winners in each case.
Similarly, if there are eight different voter types (i.e. a random graph relating
eight alternatives), then the same dashed line labeled “1 voter” will cross the 8-
alternative solid curve directly above 1/8 = 12% noise, corresponding to about
22% no winners whether or not the noise is concentrated in one type of voter,
or distributed across all voters. For three voters, the calculation is similar,
simply finding the noise equivalent if all rogue voter’s votes were distributed
across all voters. The lowest dashed curve labeled 1/2-voter corresponds to one
voter who votes haphazardly 50% of the time.

7.3 Haphazard votes for third or less desired alternative

One might expect in practice that uncertainty will increase for less
preferred alternatives. In other words, given two alternatives being compared,
if these alternatives are third or fourth ranked in an voter’s preference ordering,
uncertainty over which to favor should be much higher than for the first and
second choices. Consider then voters who introduce noise only if both of the
two alternatives being contested are third or higher choices. Thus in the shared
domain model, the voter’s first choice or ideal point is not adjacent to the two
contested alternatives. Fig. 7 shows the results are dramatically different from
the previous case.

First, although only results for 40 vertex random graphs are shown, the
size of the graph (n > 10) makes little difference in the main effect. Rather,
unlike the earlier results, here the edge probability of Mn (or Gn) drastically
changes the relations between voter uncertainty and the probability of no
winner. For highly connected random graphs [ p(e) -> 1 ], noise is ineffective
– as expected as the covering becomes complete– whereas for sparse graphs
such as chains, an almost trivial amount of noise or uncertainty can create a
high probability of no-winners.
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We also see a rather pleasing correlation between the edge probability of Mn
(i.e. Gn) and the asymptotic slope of the relation between no-winners and
uncertainty or noise. As the noise approaches zero, the slopes of the curves are
(1-p)/p for edge probability p. The cases for p = 1/2 and p = 1 illustrate. When
p = 1, the slope is zero; whereas for p = 1/2 the asymptotic slope is one.
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Figure 8 provides another plot of a portion of the same data, revealing a
second asymptotic property of uncertainty or noise limited to third or lower-
ranked preferences. Here, the abscissa is the mean maximum degree of Mn  (Gn)
normalized by the number of vertices n. For all points shown, the noise is
fixed at the maximum of 100%, provided that the two contested alternatives are
not adjacent to the voter’s first choice. There appears to be an asymptotic bound
on the percent no-winners versus the normalized mean maximum degree of Mn .
The theoretical explanation is under study.
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8. Summary
There are three main points:  First, outcomes are very sensitive to

variations of preference orderings, especially those that are inconsistent with the
model Mn for the domain held by the majority.  Second, when voting uncertainty
is limited to deciding between choices that are third-ranked or lower (i.e. choices
not adjacent to the voter’s ideal point), then the type of graph (i.e. structure of
Mn ) is the main factor in blocking unique winners, with the deleterious effects
of uncertainty increasing as the similarity relationships in the domain model Mn
becomes more sparse [Fig.7].  Equivalently, for random graphs, as the mean
maximum vertex degree decreases [Fig.8], the percent of no-winners increases
roughly monotonically when uncertainty is limited to third or higher-ranked
alternatives. The size of Mn makes little difference for n>40 alternatives.
Thirdly, and in contrast to uncertainty in less desirable preferences, when
uncertainty or noise pervades all choices except the voter’s first choice, then the
odds for outcomes with no-winners increases with the size of the domain model
Mn , and the structure of Mn is much less important [Fig.6].
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10. Appendix: Robustness of Three Tally Procedures

10.1  Definitions of the tallies

Plurality P (winner-take-all):  Let there be n alternative choices ai with vi of
the voters preferring alternative ai. The winner is

Plurality_winner  =  argMax(i) {vi} [1]

Note that no information about any similarity relationships among alternatives
is captured in [1]. In other words, the Plurality voting method does not
consider second ranked preferences of the voters.

Borda B: Assume the alternative choices are related by a model Mn that is
held in common by all voters. In the unperturbed case, each voter’s ranking of
alternatives reflects information about choice relationships. (Note that the
effective role of is to place conditional priors on the choice domain.) Although
the shared model Mn has typically been represented as a graph, Gn, it is more
convenient to use the matrix Mn where the entry “1” indicates the presence of
the edge ij in Gn and 0 otherwise. For simplicity, we assume that the edges of
Mn are undirected, meaning that if alternative a1 is similar to alternative a2,
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then a2 is equally similar to a1. However, directed edges require only a trivial
modification to the scheme.

With Mn expressed as the matrix Mn we can include second choice
opinions in a tally by defining a new voting weight v*

i as
  v*

i  =  { 2 vi  +  Σj  Mn j vj  }         [2]
where now first-choice preferences are given twice the weight of the second-
ranked choices, and third or higher ranked options have zero weight. (This is a
simplified, revised Borda procedure.) The winner is then

winner_Borda  =  argMax(i) {v*
i}         [3]

Condorcet C:

Definition: let dij be the minimum number of edge steps between vertices i and j
in Mn, where each vertex corresponds to the alternatives ai and aj respectively.

Then a pairwise Condorcet score Sij between alternatives ai and aj is given by

 Sij = Σk vk sgn[ djk - dik]          [4]

with the sign positive for the alternative ai or aj closer to ak. Note that if ai or
aj  are equidistant from ak, then sgn=0 and the voting weight vk does not
contribute to Sij. Furthermore, as before in the Borda method, we again impose
a maximum on the value of dij of 2, which means that third or higher ranked
alternatives do not enter into the tally.

A Condorcet winner is then
      winner_ Condorcet  =   ForAlli=!=j  Sij  >  0 .         [6]

10.2 Results

Figure 9 provides some additional data on the robustness of the three
aggregation procedures.  Here, connected random graphs of edge probability 1/4
were generated, with weights on nodes chosen from a uniform distribution.
Winners were then found using Condorcet (C ), Borda (B) and simple Plurality
(P) tallies, the latter being simply that node with maximum input weight. Then
the input weights were diddled using a uniform sampling from +/- 50% of the
initial node weight (hence and average of 25% variation.) Using the same
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graphical model Mn, a second set of winners were calculated. Figure 9 shows the
probability that the winners were the same.

   

For the Borda and Condorcet procedures. over 80% of the winners remained the
same (curve labeled BC). In contrast, the simple Plurality method (P) was not
robust to noisy input weights. Furthermore, as shown earlier in Fig. 3, the
Plurality winner seldom agreed with the Borda or Condorcet winners constrained
by graphical models describing similarity relations among 10 or more
alternatives. This difference shows the large effect prior knowledge about the
domain can have on the determining optimal (maximum likelihood) choices.


